Distribution of the presynaptic calcium sensors, synaptotagmin I/II and synaptotagmin III, in the goldfish and rodent retinas.
نویسندگان
چکیده
Synaptic vesicle exocytosis is triggered by rises in calcium up to 100 microM at the site of vesicle fusion. The synaptic vesicle proteins synaptotagmin 1 and 2 (Syt I and Syt II) bind calcium at similarly high concentrations and have been proposed as the calcium sensors for fast neurotransmitter release. However, 1 microM calcium produces tonic transmitter release at photoreceptor and bipolar cell synapses in the goldfish retina, suggesting that these synapses use a higher affinity calcium sensor. Immunofluorescent staining with a panel of Syt I/II antibodies detected Syt I/II in both photoreceptor and bipolar cell terminals of the rodent retina. By contrast, no staining of either photoreceptor or protein kinase C (PKC)-labeled bipolar cell terminals was detected in the goldfish retina with any of the Syt I/II antibodies. The high affinity calcium sensor synaptotagmin 3 (Syt III) was localized to the synaptic layers of both goldfish and rodent retinas; however, while Syt III was associated with PKC-labeled bipolar cell terminals in the goldfish retina, it did not co-localize with PKC in the mouse retina. These results suggest that, unlike in their mammalian counterparts, synaptic vesicle exocytosis in goldfish photoreceptor and bipolar cell terminals utilizes a calcium sensor other than Syt I/II, possibly Syt III.
منابع مشابه
-Independent Syntaxin Binding to the C2B Effector Region of Synaptotagmin
Although synaptotagmin I, which is a calcium (Ca 2+)-binding synaptic vesicle protein, may trigger soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated synaptic vesicle exocytosis, the mechanisms underlying the interaction between these proteins remains controversial, especially with respect to the identity of the protein(s) in the SNARE complex that bind(s) to...
متن کاملLocalization of synaptotagmin-binding domains on syntaxin.
Synaptotagmin, an abundant calcium- and phospholipid-binding protein of synaptic vesicles, has been proposed to regulate neurotransmitter release at the nerve terminal. To understand better the biochemical mechanism of neurotransmitter release, we have investigated the calcium-dependent and -independent protein-protein interactions between synaptotagmin I and syntaxin 1a, a subunit of the recep...
متن کاملDirect interaction between synaptotagmin and the intracellular loop I-II of neuronal voltage-sensitive sodium channels.
Synaptotagmin, a synaptic vesicle protein involved in Ca(2+)-regulated exocytosis, displayed direct high affinity interaction with neuronal sodium channels. Monoclonal antibodies directed against synaptotagmins I and II adsorbed in a concentration-dependent and -specific manner [(3)H]saxitoxin prelabeled sodium channels extracted with detergent from nerve endings. Conversely, co-immunoprecipita...
متن کاملDevelopmental regulation of synaptotagmin I, II, III, and IV mRNAs in the rat CNS.
Synaptotagmin I is an abundant synaptic vesicle protein that has an essential function in mediating Ca2+-triggered neurotransmitter release. We have analyzed the distribution of four neural synaptotagmin isoforms during postnatal development of the rat CNS by in situ hybridization. Synaptotagmin I, II, III, and IV genes have distinct patterns of spatiotemporal expression except in cerebellum gr...
متن کاملSynaptotagmin-7 Is an Asynchronous Calcium Sensor for Synaptic Transmission in Neurons Expressing SNAP-23
Synchronization of neurotransmitter release with the presynaptic action potential is essential for maintaining fidelity of information transfer in the central nervous system. However, synchronous release is frequently accompanied by an asynchronous release component that builds up during repetitive stimulation, and can even play a dominant role in some synapses. Here, we show that substitution ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of vision
دوره 3 4 شماره
صفحات -
تاریخ انتشار 2003